Sixth Semester B.E. Degree Examination, June/July 2016

Compiler Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Explain with a neat diagram, the phases of a compiler. Mention the input and output for each phase with an example, "position = initial + rate * 60". (12 Marks)
 - b. Explain input buffering strategy used in lexical analysis phase.

(04 Marks)

c. Construct a transition diagram for relational operators.

(04 Marks)

2 a. Show that the following grammar is ambiguous:

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Write an unambiguous grammar for the same.

(06 Marks)

b. Given the grammar

$$S \rightarrow (L) \mid \alpha$$

$$L \rightarrow L, S \mid S$$

- i) Make necessary changes to make it suitable for LL(1) parsing.
- ii) Construct FIRST and FOLLOW sets.
- iii) Construct the predictive parsing table.
- iv) Show the moves made by the predictive parser on the input (a, (a, a)). (10 Marks)
- c. Write a recursive descent parser for the grammar: $S \rightarrow cAd$, $A \rightarrow ab \mid a$ and for the input "cad" trace the parser. (04 Marks)
- 3 a. Show that the following grammar is not LL(1) without constructing parsing table.

$$S \rightarrow iCtSS' \mid \alpha$$

$$S' \rightarrow eS \in$$

 $C \rightarrow b$

(06 Marks)

b. What is meant by handle pruning? Show the working of a shift reduce parser for accepting id + id * id , considering the grammar:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F | F$$

c. $F \rightarrow (E) | id ?$

(10 Marks)

For the following grammar $S \rightarrow 0S1 \mid 01$, indicate the handle in the following right sentential form 00001111. (04 Marks)

4 a. Consider the following grammar:

$$S \rightarrow L = R \mid R$$

$$L \rightarrow *R \mid id$$

 $R \rightarrow L$

- i) Obtain LR(0) items.
- ii) Compute FIRST and FOLLOW.
- iii) Obtain SLR parsing table.
- iv) Check whether the given grammar is SLR or not.

(10 Marks)

b. Consider the following grammar:

$$S \rightarrow AA$$

 $A \rightarrow Aa \mid b$

- i) Compute sets of LR(1) items.
- ii) Construct canonical LR(1) parsing table.
- iii) Show the parsing steps for the string "baaba".

(10 Marks)

PART - B

a. For the given productions shown below, write semantic rules and construct annotated parse 5 tree for 3*5+4n

 $L \rightarrow En$, $E \rightarrow E1+T$, $E \rightarrow T$, $T \rightarrow T1*F$, $T \rightarrow F$, $F \rightarrow (E)$, $F \rightarrow digit$ (08 Marks)

- b. Obtain SDD for simple type declaration. Construct a dependency graph for the declaration float a, b, c along with evaluation order. (08 Marks)
- c. Define the following with examples:
 - S attributed definitions
 - ii) L attributed definitions.

- Explain how DAG will help in intermediate code generation. Construct a DAG and a three 6 address-code for the expression a + a*(b-c)+(b-c)*d(08 Marks)
 - Explain the following with an example:
 - iii) Indirect triples i) Quadruples ii) Triples

(06 Marks)

Explain syntax directed translation of switch statement.

(06 Marks)

- Describe the general structure of an activation record. Explain the purpose of each item in 7 the activation record. (08 Marks)
 - What is garbage collection? Explain the design goals of garbage collector. b.

(10 Marks)

Define local and non-local data.

(02 Marks)

Briefly explain various issues in code generation phase. 8

(10 Marks)

Generate the 3-address statements for the following programming construct and obtain the basic blocks for generated code.

$$i = 1$$
do
$$sum = sun$$

sum = sum + a[i

while (i < = 20

(10 Marks)